
 1

Some Autonomic Properties of Two Legacy  
Multi-Agent NASA Systems - LOGOS and ACT 

 
 
Walt Truszkowski, James Rash 

NASA GSFC 
Code 588 

walter.f.truszkowski@nasa.gov 
james.l.rash@nasa.gov  

Christopher Rouff 
SAIC 

rouffc@saic.com 

Mike Hinchey 
NASA GSFC 

Code 581 
michael.g.hinchey@nasa.gov

 
 

 

Abstract 
 

To reduce the cost of future space flight missions and 
to perform new science, NASA has been investigating 
autonomous ground and space flight systems.  These goals 
of cost reduction have been further complicated by 
NASA's plans to use constellations and swarms of 
nanosatellites for future science data-gathering which 
may entail large communications delays and loss of 
contact with ground control for extended periods of time.  
This paper describes two prototype agent-based systems, 
the Lights-out Ground Operations System (LOGOS) and 
the Agent Concept Testbed (ACT), and their autonomic 
properties that were developed at NASA Goddard Space 
Flight Center (GSFC) to demonstrate autonomous 
operations of future space flight missions.  The paper 
discusses the architecture of the two agent-based systems, 
operational scenarios of both, and the two systems’ 
autonomic properties. 
 
1. Introduction 

 
Until recently, space missions have been operated 

manually from ground control centers.  The high costs of 
satellite operations have prompted NASA and others to 
seriously look into automating as many functions as 
possible.  A number of more-or-less automated ground 
systems exist today, but work continues with the goal of 
reducing operation costs to even lower levels.  Cost 
reductions can be achieved in a number of areas.  Greater 
autonomy of satellite ground control is one such area. 

To accomplish these cost reductions, NASA has set far-
reaching autonomy goals for ground-based and space-
based systems.  More reliance on “intelligent” systems and 
less on human intervention characterizes its autonomy 
goals.  These goals of cost reduction have been further 
complicated by NASA's plans to use constellations and 
swarms of nanosatellites for future science data-gathering.  
These constellations may have large communications 
delays and at times be out of contact with ground control 
for extended periods of time.  Because of this, the onboard 

and ground-based systems will need to have autonomic 
properties.  The remainder of this paper discusses two 
agent-based systems that have been prototyped and their 
autonomic properties. 

 
2. Overview of Two NASA GSFC Agent-
based Systems 

 
The Advanced Architectures and Automation Branch at 

Goddard Space Flight Center (GSFC) has a leading role in 
the development of agent-based approaches to realize 
NASA's autonomy goals.  Two major successes of the 
branch were the development of the Lights-Out Ground 
Operations System (LOGOS) [3, 4, 6, 7] and the Agent 
Concept Testbed (ACT) [6, 7]. 

LOGOS was the first multi-agent system developed 
and provided an initial insight into the power of agent 
communities, autonomy and autonomic properties of these 
systems.  The agents in LOGOS acted as surrogate 
controllers and interfaced with legacy software that 
controllers normally used as well as humans. 

Based on the success of this first prototype, 
development was done on ACT, an environment in which 
richer agent and agent-community concepts were 
developed through detailed prototypes and operational 
ground-based and space-based scenarios.  ACT has given 
GSFC more experience in architecting and developing 
communities of agents, autonomous and autonomic 
systems, as well as the trade-offs and complications that 
accompany such systems. 

The goal of our work is to transition proven agent 
technology into operational NASA systems. The 
implementation of the above multi-agent systems provided 
an opportunity to exercise and evaluate the capabilities 
supported by the agent architectures and refine the 
architectures as required.  It also provided an opportunity 
for space mission designers and developers to “see” agent 
technology in action.  This has enabled them to make a 
better determination of the role that agent technology can 
play in their missions. 



 2

There have been many definitions of agents [1, 8].  For 
this paper we will define an agent as a software system 
that is autonomous and has the ability to perceive and 
affect its environment and communicate with other agents. 
A multi-agent system, or community of agents, is simply a 
collection of agents that cooperate in a community to 
accomplish a common goal.  For autonomic systems we 
will use the definitions provided in [9], self-configuring, 
self-optimizing, self-healing, and self-protecting.  The 
remainder of this paper describes the LOGOS and ACT 
agent communities, brief operational overviews and the 
autonomic properties of each of the two systems.   

 
3. LOGOS 

 
LOGOS was a proof-of-concept system that used a 

community of autonomous software agents that 
cooperated to perform functions previously done by 
human operators who used traditional software tools, such 
as orbit generators and command sequence planners.  The 
following discusses the LOGOS architecture, an 
operational scenario and its autonomic properties. 

 
3.1. LOGOS Architecture.   
 
The LOGOS architecture is shown in Figure 1. LOGOS 
was made up of 10 agents, some of which interfaced with 
legacy software, some which performed services for the 
other agents in the community, and others which 
interfaced with an analyst or operator.  All agents could 
communicate with all other agents in the community, 
though not all agents needed to communicate with each 
other. 

The System Monitoring and Management Agent 
(SysMMA) kept track of all agents in the community and 
provided addresses of agents for other agents requesting 
services.  Each agent when started had to register their 
capabilities with SysMMA and obtain addresses of other 
agents whose services they would need. 

The Fault Isolation and Resolution Expert (FIRE) agent 
resolved satellite anomalies.  FIRE was notified of 
anomalies during a satellite pass.  FIRE contained a 
knowledge base of potential anomalies and a set of 
possible fixes for each.  If it did not recognize an anomaly 
or was unable to resolve it, it sent the anomaly to the user 
interface agent to be forwarded to an analyst for 
resolution. 

The User Interface Agent (UIFA) was the interface 
between the agent community and the graphical user 
interface that the analyst or operator used to interact with 
the LOGOS agent community.  UIFA received 
notification of anomalies from the FIRE agent, handled 
the logon of users to the system, kept the user informed 
with reports, and routed commands to be sent to the 
satellite and other maintenance functions.  If the attention 
of an analyst was needed but none was logged on, UIFA 
would send a request to the PAGER agent to page the 
required analyst. 

The VisAGE Interface Agent (VIFA) interfaced with 
the VisAGE 2000 data visualization system.  VisAGE was 
used to display spacecraft telemetry and agent log 
information.  Real time telemetry information was 
displayed by VisAGE as it was downloaded during a pass.  
VIFA requested the data from the GIFA and AIFA agents 
(see below).  An analyst could also use VisAGE to 
visualize historical information to help monitor spacecraft 

GenSAA/
Genie
I/F Agent

AGENT COMMUNITY

Log
I/F Agent

SysMM
Agent

FIRE
Agent

Pager
I/F Agent

User
I/F Agent

MOPSS
I/F Agent

DB I/F
Agent

Archive
I/F Agent

VisAGE
I/F Agent

LOGOS
UI USER

VisAGE

Paging
System

MOPSS

GenSAA
Data Server

GenSAA/
Genie

Control
Center

Spacecraft

= Agent

= External
   System

= Data

Archive

LOGOS

LOGOS
DB

   Archive

Log

 
Figure 1: LOGOS agent community and legacy software. 



 3

health or to determine solutions to anomalies or other 
potential spacecraft problems. 

The Pager Interface Agent (PAGER) was the agent 
community interface to the analysts’ pager system.  If an 
anomaly occurred or other situation arouse that needed an 
analyst’s attention, a request was sent to the PAGER agent 
which then sent a page to the analyst. 

The Database Interface Agent (DBIFA) and the 
Archive Interface Agent (AIFA) stored short term and 
long term data, respectively, and the Log agent (LOG) 
stored agent logging data for debugging, illustration and 
monitoring purposes.  The DBIFA stored such information 
as the valid users and their passwords and the AIFA stored 
telemetry data. 

The GenSAA/Genie Interface Agent (GIFA) interfaced 
with the GenSAA/Genie ground station software, which 
handled communications with the spacecraft.  GIFA had 
the capability to download telemetry data, maintain 
scheduling information and to upload commands to the 
spacecraft.  Upon downloading anomalies and other data 
from the spacecraft, GIFA routed the data to other agents 
based on their requests for information. 

The MOPSS (Mission Operations Planning and 
Scheduling System) Interface Agent (MIFA) interfaced 
with the MOPSS ground station planning and scheduling 
software.  MOPSS kept track of the satellite’s orbit and 
the time of the next pass and how long it would last.  It 
also sent out updates to the satellite’s schedule to 
requesting agents when the schedule changed. 

 
3.2. An example Scenario   
 

An example scenario of how agents in LOGOS 
communicated and cooperated would start with MIFA 
receiving data from the MOPSS scheduling software that 
the spacecraft would be in contact position in two minutes.  
MIFA would then send a message to the other agents 
informing them of the upcoming event in case they needed 
to do some preprocessing before the contact.  When GIFA 
received the message from MIFA it sent a message to the 
GenSSA Data Server to start receiving transmissions from 
the control center. 

After receiving data, the GenSSA Data Server sent the 
satellite data to GIFA, which had rules indicating what 
data to send to which agents.  As well as sending data to 
other agents, GIFA also sent all engineering data to the 
archive agent (AIFA) for storage and trend information to 
the visualization agent (VIFA).  GIFA sent updated 
schedule information to the scheduling agent (MIFA) and 
sent a report to the user interface agent (UIFA) to be sent 
on to an analyst for monitoring purposes.  If there were 
any anomalies, GIFA would send them to the FIRE agent 
for resolution. 

If there was an anomaly, the FIRE agent would try to 
fix it automatically by using a knowledge base containing 
possible anomalies and a set of possible resolutions for 
each anomaly.  To fix an anomaly, FIRE would send a 
spacecraft command to GIFA to be forwarded on to the 
spacecraft.  After exhausting its knowledge base, if FIRE 
was not able to fix the anomaly, then FIRE forwarded the 
anomaly to the user interface agent, which then paged an 
analyst and displayed it on their computer for action.  The 
analyst would then formulate a set of commands to send to 
the spacecraft to resolve the situation.  The FIRE agent 
upon receiving the commands would add the new 
resolution to its knowledge base for future reference and 
would send the commands to the GIFA agent, which 
would send them to the GenSAA/Genie system for 
forwarding on to the spacecraft. 

There were many other interactions going on between 
the agents and the legacy software, which was not covered 
above.  Examples include the DBIFA requesting user 
logon information from the database; the AIFA requesting 
archived telemetry information from the archive database 
to be sent to the visualization agent and the pager agent 
sending paging information to the paging system to alert 
an analyst of an anomaly needing his or her attention. 

 
3.3. Autonomic properties of LOGOS.   
 

The operational scenarios of LOGOS exhibit the four 
types of autonomic properties: self-configuring, self-
optimizing, self-healing and self-protection.  The 
following discusses each of these properties of LOGOS in 
more detail.   
 
3.3.1. LOGOS self-configuring.  LOGOS self configures 
when the GIFA agent gets signals from the 
GenSAA/Genie ground station software that a spacecraft 
pass is about to happen.  When this occurs, the GIFA 
configures the system by waking up the needed agents for 
the pass.  If there are no anomalies, then the FIRE agent is 
not needed and is not woken up.  If it is needed, then 
LOGOS is configured for that pass with the FIRE agent 
woken up and ready to receive the anomaly.  The same is 
true of the visualization agent and the user interface agent 
if there is no user currently logged on, then those agents 
do not have to be woken up for the spacecraft pass. 
 
3.3.2. LOGOS self-optimizing.  LOGOS self-optimizes 
itself through learning.  One example of this is through the 
learning that the FIRE agent does when it does not know 
how to fix an anomaly and notifies an analyst that it needs 
help.  After the analyst provides a set of commands to fix 
the anomaly, the FIRE agent stores those commands and 
the parameters to that anomaly in its knowledge base for 



 4

future reference.  In this way it can fix this future problem 
when it occurs again. 

A second way that LOGOS self optimizes is through 
the user interface agent and the visualization agent.  These 
agents stored information that specifies which analyst 
looks at what data so that that information would be pre-
fetched and available to the analyst when he or she logs on 
to the system.  This saves time for the analyst, especially 
in a critical situation, so anomalies or just their normal job 
in general can be done faster. 

A third example is the pager agent, which notifies 
analysts when an anomaly is present.  This agent also kept 
track of information that specified which analysts were 
available at what times and modified who it called first 
based on their usual availability. 
 
3.3.3. LOGOS self-healing.  LOGOS self-heals primarily 
through the actions of the FIRE agent.  In this case, the 
FIRE agent examines anomalies that occur and then issues 
commands to fix/heal the anomalies based on its 
knowledge base.  It also self-heals through the 
intervention of the human in the loop who can fill in 
information when the FIRE agent does not have the 
requisite knowledge to solve a problem.  In this case the 
human is viewed as part of the overall system architecture.  
The FIRE agent would also learn how to fix future 
anomalies based on the inputs from the analyst when the 
FIRE agent needed help.  The self-healing aspect of 
LOGOS was its primary function and is what made the 
system lights-out and enabled lower costs of future 
operations through reduced man-power requirements. 
 
3.3.4. LOGOS self-protecting.  The self-protecting 
aspects of LOGOS are limited.  The self-protection is 
primarily done by the FIRE and the user interface agent.  
For the user interface agent, self-protection is 
accomplished when it authenticates a user logging on to 
the system to ensure the user has proper credentials before 
allowing him/her to send commands to the spacecraft.  For 
the FIRE agent, self-protection is accomplished when 
checking commands entered by the analyst to ensure they 
are not going to harm the spacecraft, though this could be 
overridden.  By checking the commands before sending 
them to the spacecraft, possible errors in the analysts 
commands can be found and possible damage to the 
spacecraft can be adverted. 

 
4. ACT 

 
The ACT agent architecture provides for a flexible 

implementation of a wide range of intelligent or reactive 
agents.  Agents in ACT are built using a component 
architecture where a component can be easily swapped out 
and replaced by another more advanced component.  The 

component architecture allows for easy removal of 
unneeded components for reactive agents and the 
inclusion of the necessary components to implement 
intelligent agents.  It is also flexible so that additional 
unforeseen components implemented with new AI 
technologies can be added as they become available 
without affecting previously implemented components. 

 
4.1. The ACT Architecture 
 

The ACT component-based architecture allows greater 
flexibility to agent designers.  A simple agent can be 
designed by using a minimum number of components that 
receive percepts (inputs) from the environment and react 
according to those percepts.  This type of agent would be a 
reactive agent. 

A robust agent would be designed using more complex 
components that allow the agent to reason in a 
deliberative, reflexive and/or social fashion.  This robust 
agent would maintain models of itself, other agents in its 
environment, objects in the environment that pertain to its 
domain of interest, and external resources that it might 
utilize in accomplishing a goal.  Figure 2 depicts the 
components for a robust ACT agent.  These components 
give the agent a higher degree of intelligence when 
interacting with its environment. 

The following sections describe the components listed 
in Figure 2 and the framework in which the components 
are implemented. 

 
4.1.1. Modeler. The modeling component is 

responsible for maintaining the domain model of an agent, 
which includes models of the environment, other agents, 
and the agent itself.  The Modeler receives data from the 
Perceptors and agent communication component.  This 
data is used to update state information in its model.  If the 
data causes a change to a state variable, the Modeler 
publishes this information to other components that have 
subscribed to updates to that variable.  The Modeler is also 
responsible for reasoning with the models to act 
proactively and reactively with the environment and 
events that affect the model's state.  In the future the 
Modeler will also dynamically modify its model based on 
experience. 

The modeler can also handle what-if questions.  These 
questions would primarily come from the planning and 
scheduling component, but may also come from other 
agents or from a person who wants to know what the 
agent would do in a given situation or how a change in the 
agent’s environment would affect the values in its model. 

 
4.1.2. Reasoner. The Reasoner component works with 

information in its local knowledge base as well as model 
and state information from the Modeler to make decisions 



 5

and formulate goals for the agent.  This component 
reasons with state and model data to determine whether 
any actions need to be performed to affect the agent’s 
environment, change its state, perform housekeeping 
tasks, or influence other general activities.  The Reasoner 
will also interpret and reason with agent-to-agent 
messages.  When action is necessary for the agent, the 
Reasoner will produce goals for the agent to achieve.  
Currently the Reasoner works more in a reactive manner. 
Either an input coming in or a trigger from the clock sets it 
in motion.  Work is also being done to make the Reasoner 
more proactive. 

 
4.1.3. Planner/scheduler. The Planner/Scheduler 

component is responsible for any agent level planning and 
scheduling.  The planning component receives a goal or 
set of goals to fulfill in the form of a plan request.  This 
typically comes from the Reasoning component, but may 
be generated by any component in the system. 

At the time a plan request is received, the planning and 
scheduling component acquires a state of the agent and 
system, usually the current state, as well as actions that 
can be performed by this agent (typically from the 
modeling and state component).  The planning and 
scheduling component then generates a plan as a directed 
graph of steps, which is composed of preconditions to 
check, an action to perform, and expected results (post 
condition).  Each step is also passed to any Domain Expert 
components/objects for verification of correctness.  If a 
step is deemed incorrect or dangerous, the Domain Expert 
may provide an alternative step or solution to be 
considered by the planner. Once the plan is completed, the 
Planner/Scheduler sends it back to the component that 
requested the plan (usually the Reasoner).  The requesting 
component then either passes it on to the Agenda to be 
executed or uses it for planning/what-if purposes. 

 

4.1.4. Agenda/executive: The Agenda and Executive 
work together to execute the plans developed by the 
Planner/Scheduler.  The agenda typically receives a plan 
from the Reasoner, though it can receive a plan from 
another component that is acting in a reactive mode.  The 
agenda interacts with the Execution component to send the 
plan's steps, in order, for execution.  The agenda keeps 
track of which steps are being executed, finished 
executing, idle, or waiting for execution.  It updates the 
status of each step appropriately as the step moves through 
the execution cycle.  The agenda reports the plan's final 
completion status to the Planner and Agent Reasoner 
when the plan is complete. 

The Executive executes the steps it receives from the 
Agenda.  If the preconditions are met, the action is 
executed.  When executions finish, the Executive 
evaluates post-conditions, and generates a completion 
status for that step.  The completion status is then returned 
to the agenda. 

A watch, attached to the Executive, monitors given 
conditions during execution of a set of steps.  Watches 
allow the planner to flag things that have to be looked out 
for during real-time execution, which can be used to 
provide "interrupt" capabilities within the plan.  An 
example would be to monitor drift from a guide star while 
doing an observation.  If the drift exceeds a threshold, then 
the observation is halted.  In such a case the watch would 
notify the Executive which in turn would notify the 
Agenda.  The Agenda would then inform the Reasoner 
that the plan failed and the goal was not achieved.  The 
Reasoner would then formulate another goal (e.g., 
recalibrate the star tracker). 

 
4.1.5. Agent communications: The agent 

communication component is responsible for sending and 
receiving messages to/from other agents.  The component 
takes an agent data object that needs to be transmitted to 

Features Include:
- Component-based  a rchitec ture
- Distributed knowledge bases
- Pub lish/ subsc ribe mec hanism for
   information sharing among c omponents
- Capab le of reac tive, delibera tive,
   and  soc ia l ac tions
- Can support multi-moda l reasoning
   (rules, c ases, models)

Benefits include:
- Robust infrastruc ture
- Easy to update
- Easy to ta ilor to a doma in
- Supports reuse

Environment

Agent
Communica tions Perceptors Effec tors

Agent
Reasoning

Execution
Modeling
And Sta te

Agenda

Output

Da ta Data

ACL

Reflex

Ac tions

Percepts

Planning
and

Sc heduling

Steps

Step
Completion
Sta tus

Plan
Requests Plans

Sta te
Info

Plans

Sta tus

 
Figure 2: ACT Agent Architecture 



 6

another agent and converts it to a message format 
understandable by the receiving agent.  The message 
format being used is based on Foundations of Intelligent 
Physical Agents (FIPA) [2].  The transmitting of a 
message to the appropriate agent occurs through the use of 
a NASA developed agent messaging software called 
Workplace [3]. 

The reverse process occurs for an incoming message.  
The communications component takes the message and 
converts it to an internal object and sends it to the other 
components that are subscribing to incoming messages.  
The communications component can also have reactive 
behavior where for a limited number of circumstances it 
produces an immediate response to a message. 

 
4.1.6. Perceptors/effectors: The Perceptors are 

responsible for monitoring the environment for the agent.  
An example of an environment is a spacecraft subsystem.  
Any data received by the agent from the environment, 
other than agent-to-agent messages, enters through 
Perceptors.  An agent may have zero or more Perceptors, 
where each Perceptor receives information from specific 
parts of the agent's environment.  A Perceptor may just 
receive data and pass it on to another component in the 
agent or it may perform some simple filtering/conversion 
before passing it on.  A Perceptor may also act 
intelligently through the use of reasoning systems if it is 
desired.  If an agent is not monitoring the environment, 
then it would not have any perceptors (an example of this 
would be an agent that only provides expertise, such as 
fault resolution, to other agents). 

The Effector is responsible for effecting or sending 
output to the agent's environment.  Any agent output data, 
other than agent-to-agent messages, leaves through 
Effectors.  Typically the data leaving the Effectors will be 

sent from the executive, which has just executed a 
command to send data to the environment.  There may be 
zero or more Effectors, where each Effector sends data to 
specific parts of the agent's environment.  An Effector 
may perform data conversions when necessary and may 
even act intelligently and in a proactive manner when 
necessary.  As with the Perceptors, an agent may not have 
an Effector if it is not interacting with the environment. 

 
4.1.7. Agent framework: A framework is used to 

provide base functionality for the components as well as 
the inter-component communication facility.  The 
framework allows components to be easily added and 
removed from the agent while providing a standard 
communications interface and functionality across all 
components.  This makes developing and adding new 
components easier and makes additions transparent to 
existing components in the agent.  Each component in the 
architecture can communicate information to/from all 
other components as needed. 

The primary communications for components is based 
on a publish-and-subscribe model with direct links 
between components when large amounts of data need to 
be transferred.  Components communicate to each other 
the types of data that they produce when queried.  When 
one component needs to be informed of new or changed 
data in another component, it subscribes to the particular 
data in the other component. Data can be subscribed to 
whenever it is changed or on an as needed basis.  With 
this mechanism a component can be added or removed 
without having to modify the other components in the 
agent. 

 
4.2. Dataflow between Components 

 

{ Coordinates the agent community in the MCC, manages mission goals and
coordinates the Contact manager agent}

{ Coordinates ground station activities (one agent per ground station), communicates with
  Spacecraft, sends and receives commands and telemetry }

{ Provides interface and interaction mechanisms to
  the outside world }

{ Plans and schedules contacts with the spacecraft via interface
  with external planner/scheduler (external resource) }

{ There is a proxy agent for each spacecraft in orbit.  The agents keep
   track of spacecraft status.  The agents will flag the Mission Management
   agent when an anomaly occurs that may need handling }MCC

Manager

Contact
Manager

Agent

S/C
Agent 1
Proxy

S/C
Agent 2
Proxy

S/C
Agent N
Proxy

User
Interface
Agents

Scientists,
Engineers,
Operators

MCC Planning
and Scheduling Agent

 
 

Figure 3: Agent community being developed in ACT to test out the new agent architecture and some community concepts. 



 7

This section gives an example of how data flows 
between components of the ACT architecture.  The 
example being used is when a spacecraft's battery is 
discharging.  The scenario reads as follows: 
1. The agent detects a low voltage when reading data 

from the battery via a Perceptor.  The Perceptor then 
passes the voltage value to the Modeler, which has 
subscribed to the Perceptor to receive all percepts. 

2. When the Modeler receives the voltage from the 
Perceptor it updates the value in its model.  In this 
case, the new value puts it below the normal threshold 
and changes the voltage state to "low".  This causes a 
state change event and the Modeler publishes the new 
value to all subscribing components.  Since the 
Reasoner is one of the subscribers, the low voltage 
data value is sent to the Reasoner. 

3. In the Reasoner the low voltage value fires a rule in 
the expert system.  This rule calls a method that sends 
the Planner/Scheduler a goal to achieve a battery 
voltage level that corresponds to a full charge. 

4. When the Planner/Scheduler receives the goal from 
the Reasoner, it queries the Modeler for the current 
state of the satellite and a set of actions that can be 
performed. 

5. After receiving the current state of the satellite and the 
set of available actions from the Modeler, the 
Planner/Scheduler formulates a list of actions that 
need to take place to charge the battery.  It then sends 
the plan back to the Reasoner for validation. 

6. The Reasoner examines the set of actions received 
from the Planner/Scheduler and decides that it is 
reasonable.  The plans are then sent to the Agenda. 

7. The Agenda then puts the action steps from the plan 
into a queue for the Executive. 

8. When the Executive is ready to execute a new step, 
the agenda passes it one at a time for execution. 

9. The Executive executes each action until the plan is 
finished and then notifies the Agenda it is done. 

10. The Agenda marks the plan as finished and notifies 
the Reasoner that the plan finished successfully. 

11. After the plan is executed, the voltage rises and 
triggers a state change in the Modeler when the 
voltage returns to a fully charged state.  At this time 
the Reasoner is again notified that a change in a state 
variable has occurred. 

12. The Reasoner then notes the voltage has been restored 
to a fully charged level and marks the goal as 
accomplished. 

 
4.3. ACT Operational Scenario 

 

Figure 3 illustrates an operational scenario involving a 
possible ACT agent community for a nanosatellite 
constellation.  It is based on the idea of a ground-based 
community of proxy agents, each representing a spacecraft 
in the nanosatellite constellation, which provide for 
autonomous operations of the constellation.  Future 
scenarios will depict the migration of this community of 
proxy agents to the spacecraft for an evaluation of space-
based autonomy concepts [5]. 

In this scenario there are several nanosatellites in orbit 
collecting magnetosphere data.  The Mission Control 
Center (MCC) makes contact with selected spacecraft 
according to its planned schedule when the spacecraft 
come into view. 

The agents that make up the MCC are: 

• Mission Manager Agent (MMA): coordinates the 
agent community in the MCC, manages mission goals 
and coordinates with the Contact Manager Agent. 

• Contact Manager Agent (CMA): coordinates ground 
station activities, communicates with the spacecraft, 
sends and receives data, commands, and telemetry. 

• User Interface: interfaces with the user to get 
commands for the spacecraft and sends data to be 
displayed. 

• MCC Planning/Scheduling Agent: plans and 
schedules contacts with the spacecraft via external 
planner/scheduler. 

• Spacecraft Proxy Agents: keeps track of spacecraft 
status, health and safety, etc.  The proxies notify the 
Mission Manager Agent when anomalies occur that 
need handling. 

Each of the above agents registers with the GCC 
manager agent.  The GCC manager agent notifies them 
when a contact is approaching for their spacecraft, if 
whether another agent is going to be added to the 
community, and how to contact another agent.   

The following is a spacecraft contact scenario that 
illustrates how the agents work with the GCC manager 
agent: 

• Agents register with the GCC Manager Agent at 
system startup. 

• GCC Planner/Scheduler Agent communicates with 
the spacecraft Proxy Agents to get view data.  It then 
creates a contact schedule for all orbiting spacecraft. 

• GCC Manager Agent receives the schedule from the 
GCC Planner/Scheduler Agent and gives details of 
the next contact to the Contact Manager Agent: when 
and with which spacecraft. 

• The Contact Manager Agent contacts the spacecraft at 
the appropriate time and downloads the telemetry and 



 8

sends it to the appropriate spacecraft Proxy Agent for 
processing. 

• The spacecraft Proxy Agent processes the telemetry 
data, updates the spacecraft’s status, evaluates any 
problems, warnings, etc., and sends any commands 
that need to be uploaded to the Contact Manager. 

• If a Proxy Agent determines a problem exists and an 
extended or extra contact is needed, it sends a 
message is sent to the GCC Planner/Scheduler Agent, 
which will re-plan its contact schedule and 
redistribute it to the GCC Manager. 

• The Contact Manager downloads data and uploads 
any commands from and to the spacecraft as 
instructed by the spacecraft Proxy Agent.  The 
Contact Manager agent ends the contact when 
scheduled. 

An example of a typical contact with a satellite would be: 
• The Contact Manager Agent (CMA) receives an 

acquisition of signal (AOS) from a spacecraft.  The 
MCC is now in contact with the spacecraft. 

• The CMA requests the spacecraft to start 
downloading its telemetry data and sends received 
data to a spacecraft proxy agent. 

• The proxy agent updates the state of its spacecraft 
model from the telemetry received.  If a problem 
exists, the Mission Manager Agent is contacted and 
appropriate action (if any) is planned by the system. 

• The Contact Manager Agent analyzes the downloaded 
telemetry data.  If there is a problem, the CMA may 
alter the current contact schedule to deal with the 
problem. 

• The CMA executes the contact schedule to download 
data, delete data, or save data for a future pass. 

• The Mission Manager Agent ends contact. 
 
4.4. Autonomic Properties of ACT 

 
The various operational scenarios of ACT exhibit at 

least three types of activities that contribute to its 
autonomic functionality.  The autonomic functionalities 
exhibited are: self-configuring (adaptation to changing 
environment), self-optimizing (steps to maximize 
utilization), self-healing (ability to recover from 
anomalies) and self-protecting (protect against failures).  
The following further discusses these autonomic 
properties of ACT. 
 
4.4.1. ACT self-configuration.  As an example of this 
property, when ACT detects, from analysis of downloaded 
telemetry, that there is a problem, the Contact Manager 
alters the current satellite contact schedule to enable the 

problem to be addressed.  What is being reconfigured, in 
this case, is the subset of the spacecraft environment that 
is currently planned for contact. 
 
4.4.2. ACT self-optimization.  As an example of this 
property consider what happens when a Proxy Agent 
determines that a problem exists with its associated 
spacecraft.  When this situation arises a 
replanning/rescheduling activity occurs.  This is done to 
optimize the behavior of the entire ACT system. 
 
4.4.3. ACT self-healing.  As an example of this again 
consider what happens when a Proxy Agent detects a 
problem with its associated spacecraft.  Following a 
diagnosis of the problem (which may involve access to the 
human component of the ACT) corrective actions, in the 
form of commands, are generated and made ready for 
transmission to the affected spacecraft.  This problem-
diagnosis/corrective-action cycle is a major part of ACT’s 
self-healing capability. 

It should be noted that the three autonomic features 
discussed above all stem from ACT’s determination that a 
problem has occurred.  In attending to the problem, ACT 
reconfigures, tries to optimize its operations and proceeds 
to diagnose and solve the identified problem. 
 
4.4.4 ACT self-protection.  ACT is self-protecting in the 
sense that it constantly monitors the spacecraft systems 
and modifies its operations if a parameter ranges outside 
its normal bounds.  An example of self-protection is given 
in the above example of dataflow between components of 
the architecture.  In this example, the battery is 
discharging and if nothing is done the spacecraft will lose 
power and become inoperable.  ACT then takes the 
necessary actions to recharge the battery (turning towards 
the sun, for example).  In addition, it also has self 
protection through validation of system commands to 
insure that command sequences executed will not harm the 
spacecraft or put it in a position where it could be harmed. 
 
5. Conclusion 

 
The LOGOS and ACT agent architectures and 

implementation were developed to demonstrate 
autonomous ground and space operations to lower costs of 
those operations and to provide technology for future 
missions requiring lengthy times between contacts with 
the ground.  To accomplish these goals, autonomic 
properties of the systems were developed.  Without these 
properties there would constantly have to be a human in 
the loop which would increase costs and limit the scope of 
future missions.  This not only is true of NASA missions, 
but also would be true of other real-time mission critical 
systems in the commercial world. 



 9

The self-healing, self-configuring, self-optimizing and 
self-protecting properties of both LOGOS and ACT make 
them autonomic systems.  It is also noted that in the 
spacecraft domain all of these properties are closely tied 
together.  The self-healing actions can be the result of self-
protecting actions.  The self healing actions then may 
cause self-configuring commands to occur, which in turn 
may trigger self-optimizion. 

The LOGOS and ACT architectures provide for a 
flexible implementation of a wide range of intelligent and 
autonomic agents.  The ACT architecture allows for easy 
removal of unneeded components for reactive agents and 
the inclusion of the necessary components to implement 
intelligent and autonomic agents.  It is also flexible so that 
additional unforeseen components can be added without 
affecting previous components. 

The ultimate goal of our work is to be able to transition 
proven agent and autonomic technology into operational 
NASA systems. The implementation of the scenarios 
discussed above (and others under development) will 
provide an opportunity to exercise, evaluate and refine the 
capabilities supported by the agent architectures.  It will 
also provide an opportunity for space mission designers 
and developers to “see” agent and autonomic technology 
in action and their resulting benefits.  This will enable 
them to make a better determination of the role that this 
technology can play in their missions. 

 
6. References 
 

[1] Ferber, J. Multi-Agent Systems, An Introduction to 
Distributed Artificial Intelligence.  Addison-Wesley. 
1999. 

[2] Foundation for Intelligent Physical Agents (FIPA). 
FIPA Specification Part 2: Agent Communication 
Language. Geneva, Switzerland. November 28, 1997. 

[3] LOGOS Overview, Design and Specification 
Documents. http://agents.gsfc.nasa.gov/products.html. 

[4] LOGOS System Overview Document.  
http://agents.gsfc.nasa.gov/documents/code588/LOG
OS.stuff/logosoverview.pdf 

[5] Rouff, C., and Truszkowski, W.  A Process for 
Introducing Agent Technology into Space Missions.  
IEEE Aerospace Conference.  March 11–16, 2001. 

[6] Truszkowski, W., and Hallock, L. Agent Technology 
from a NASA Perspective.  CIA-99, Third 
International Workshop on Cooperative Information 
Agents, Uppsala, Sweden, 31 July – 2 August 1999, 
Springer-Verlag. 

[7] Truszkowski, W. and Rouff, C.  An Overview of the 
NASA LOGOS and ACT Agent Communities.  5th 
World Multiconference on Systemics, Cybernetics, 
and Informatics (SCI 2001).  July 22-25, Orlando, 
Florida. 

[8] Wooldridge, M. Intelligent Agents.  In Multiagent 
Systems.  Edited by Gerhard Weiss. MIT Press.  1999 

[9] Joseph, J. and Fellenstein, C.  Grid Computing.  IBM 
Press 2004. 

 

 


